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Abstract

Artificial intelligence (Al) is establishing itself as the next generation of technology. However, the data required
to train such expandable, self-learning, powerful systems have so far been collected and pre-processed in a
traditional manner. Moreover, because of the lack of governance in many such Al initiatives, these processes
remain uncontrolled and often produce low-quality results. Both issues urgently need solution.

Three core principles of cognitive data engineering have been developed that are enabled by the recent expansion
of Al technology. First, quality metrics and evaluation, as well as anomaly detection and correction mechanisms,
have been formalized to provide a comprehensive Al-governed data-quality framework. Next, a set of metadata
standards that define describe and affect Internet-scale data ecosystems is proposed. Their implementation
provides a sophisticated method of capturing data lineage and provenance information and using that data for
compliance and efficient data query acceleration. Third, the data pipeline architecture is designed to produce the
definition and execution of complex data pipelines and orchestration in a cost-aware manner. These contributions
enable an Al governance framework for complete data pipelines. Such a framework defines roles, policies, and
decision rights to identify risks in the use of data pipelines, assess those risks quantitatively, and provide mitigation
guidelines.
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1. Introduction

Data engineering, the process of making data available for consumption, is a critical function in almost
every industry. It encompasses the design, creation, management, and optimization of data pipelines and other
systems for storing, moving, and processing large volumes of data. These capabilities have powered the
development of data science, machine learning, big data, and Al, enabling rapid innovations in a broad range of
application domains, including healthcare, national security, finance, and self-driving vehicles.

The advent of generative Al and, in particular, the recent development of foundation models—extremely
large deep learning models that have been pretrained using self-supervision on massive datasets—has spurred a
new wave of interest in using Al systems not just for analysis and prediction, but also for production workflows
and applications. These new, more complex ecosystems for deploying Al systems—often referred to as Al
factories—have changed the requirements and stressors on data engineering, creating challenges not only for
engineering but also for the quality, lineage, and management of the underlying data pipeline support systems.
The focus so far in Al has primarily been on the intelligence exhibited by the Al models and not on other key
components of the wider ecosystem for deploying these models.
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1.1. Overview of Cognitive Data Engineering Principles

Organizations increasingly rely on data science to extract value from data. Unlike classic software
development processes, data science projects use data pipelines that vary in structure and execution over time and
can even merge or split running pipelines. Data pipeline engineering is often now performed by highly skilled
data scientists and analysts, who work without necessary software engineering principles and data management
tools. These gaps lead to data quality issues and pipeline execution inefficiencies.
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Fig 1: Cognitive Data Engineering: Leveraging AI-Governed Data Quality and Lineage Management to
Bridge the Gap Between Data Science and Software Engineering

Cognitive data engineering—Al-governed data quality, data lineage management, and data pipeline
engineering—allows data to be managed so that the right data are on hand at the right time and for the right cost.
Essential Al-governed data quality principles include defining quality metrics and levels for various use cases;
assessing data quality based on these requirements; detecting and correcting data (de)normalization,
compositional, and logical anomalies; and ensuring the availability of complete operational datasets. In complex,
heterogeneous ecosystems, additional aspects, such as the definition and management of an enterprise data model,
an operational data vault, or a cleansed operational subsystem, become crucial. Enabling Al-governed data quality
within a large enterprise also calls for elements such as a quality charter, fact sheet, and risk profile.

2. Theoretical Foundations of Cognitive Data Engineering

Data engineering focuses on data processing for analytics and learning. Though often a specialty,
engineering for Al-driven services introduces unique challenges that require new support paradigms. Quality
control becomes increasingly difficult as real-time data feeds from sporadic, untrusted, and rapidly evolving
sources replace trusted and consistently available historical databases. Data provenance and lineage tracking gain
importance due to the intricacy of AI/ML components and the growing dependence on complex data ecosystems
comprising diverse and hacker-prone services. Resource-aware data scheduling mechanisms are required to
continuously monitor the current and predicted load levels and control cloud resource usage across public, private,
and hybrid deployments.

While the evolving data ecosystem is already highly complex and vulnerable, its management and control
must also now be delegated to Al-based cognitive services with the potential for augmented self-healing that can
dynamically fix detected issues with minimal human intervention. Recent work demonstrates the need for data
quality control and resilience by analyzing the most common causes of ML prediction errors in enterprise systems,
proposing a hierarchy of metric types and corresponding monitoring solutions and combining them into a coherent
quality framework for continuous requirement specification, monitoring, and maintenance.
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2.1. Data Quality in AI-Driven Systems

Data quality issues impact machine learning systems, resulting in organizations scuttling Al initiatives.
The scientific literature supports these real-world experiences through normative works proposing quality metrics
for data lakes, operational and exploratory repositories, and automated data pipelines. Temporal stability of quality
metrics is used in change detection algorithms that identify incremental maintenance and cleaning tasks. The
surface and depth of data lakes influence the quality of children observed during the actual execution of machine
learning projects. Further, data provided by sensor networks is termed smart data, and a framework for defining
smart data quality metrics employing time constraints is presented. Given the nature of Al systems, quality has
also been viewed through the lens of Al governance, where existing data quality roles are mapped to a governance
layer; the data steward role has been expanded to include data-quality-as-a-service operations and infrastructure
support services.

An exploratory study using the qualities of successful companies as a basis for comparison has shown
that emerging technologies promote lower quality than the ten established qualities generally accepted. However,
machine learning and artificial intelligence reduce quality for education and cognitive systems. Towards this goal,
machine learning housing data ask such services to inspect input datasets in an unsupervised setup. Florida, USA
a set of specified features is presented, that serve the purpose of tracking dependency-based heuristic preparation
in the final machine-learning service using the serviced dataset. A recommendation model is built and presented
using flask and span tools that asks for other training sets along with its quality features visible in the
recommendation model while preparing, thus serving the need of dependency-based heuristic allocation and
preparation of data.
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Fig 2: Multi-Facet Data Quality Scoring Model with Normalization and Weighted Aggregation
Equation 1) Data Quality Metrics — Overall Quality Score (Q)
Step 1: Define quality facets (attributes)
1,92, > qm
Each q; is typically normalized to [0,1] (0 = worst, 1 = best).
Step 2: Normalize a raw metric to a 0—1 score

Suppose a facet is measured as a raw metric x (e.g., % missing, latency, error rate). To map it to [0,1], a common
normalization is min—max:
o If higher is better:
_ X — Xmin
q 3

Xmax ~ Xmin

o If lower is better (e.g., missing rate, error rate):
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Xmax ~ Xmin
This gives comparable scores across facets.

Step 3: Weight facets by importance (policy / use-case)

The article emphasizes that quality depends on goals/use-cases and governance policies.
Assign weights w; = 0 with:

Step 4: Compute the overall quality score

A standard governed “overall quality” KPI is the weighted sum:

m
Q= zwi q;
i=1

2.2. Data Lineage and Provenance

Research on data lineage has largely focused on two objectives: the management of data in large Directly
Accessed Data Store (DADS) data stores and within complex data ecosystems characterized by a rich data
provenance model. The latter addresses new business challenges imposed by the growing disintermediation of
data consumers and producers through cloud computing and the desire for a more agile, responsive style of
interaction. The proliferation of diverse data providers participating in a data-sharing ecosystem brings to the fore
the old parable of “garbage in, garbage out.” Consumers believe they are obligated to pay for products of higher
quality than those they’ve been exposed to in the past. DADS stores, on the other hand, represent a vault for data
writers. These stores offer online transaction processing-type cost and availability trade-offs, with more emphasis
given to scalability than to quality. Management of DADS repositories is further complicated by the complexity
of the last-miles providing data to these stores at scale.

Two specific objectives emerge from these considerations. The first involves supporting the full data
lifecycle within complex ecosystems over timeframes that range from a few minutes to several weeks. The goal
is to formalize the structure and role of data within a Cloud Service Provider (CSP) ecosystem characterized by
DADS consumers, producers, and a range of data creation and repurposing services that can take different forms
(ranging from highly automated provisioning to high-touch, bespoke replication). The lineage and integrity
requirements are subsequently translated into a suite of new data properties and persistence mechanisms enabled
by a combination of NoSQL storage and the use of provenance tracking. When viewed from this angle, the data
is no longer an opaque block, but a living organism that grows, ages, matures, and dies. The second objective
extends the traditional concepts of data lineage and provenance by examining in detail the source, transformation,
quality, and completeness properties of the data arriving at the last-mile within a data-sharing ecosystem of
multiple players.

3. AI-Governed Data Quality Framework

Quality provides foundation and merit for data science and analytics. Intrinsically, all data in data-driven
systems exhibit some quality flaws. Majority of these flaws are recognized and serviced, however, there are
remaining anomalies which can fall under the radar of reliability matrices. To help with discovering and servicing
these flaws in data, an Al-governed quality framework has been structured which recognizes critical quality
metrics, automated anomaly discovery and service methods that can be orchestrated during data pipeline
execution.

Quality evaluation criteria is delineated in the quality assurance phase using a set of Quality Attributes,
one for each data quality facet. The framework's next stage autogenerated condition-specific knowledge logic that
can cast fault indication rules on data quality. Subsequent stage uses these indication patterns to alert an appliance
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of existing issue with data sources/producers. The final stage generates machine-learning-based decision
classifiers that predict whether a remediation activity is required during the service of the data in line with
established quality dimensions. A knowledge system for an automatic crowd-sizing ability remains under
development. An augmentation for this knowledge system defines logical decision templates that express surface
conditions capable of requiring machine-assisted appraisal and servicing of data.

3.1. Quality Metrics and Evaluation

The quality of data is dependent on the goals of its analysis. Nevertheless, a range of attributes
characterizes the utility of a dataset in any context. Data quality metrics collect these attributes into a formal
scheme. Automating the identification of suitable metrics is a fundamental aspect of quality analysis in research,
where no additional information is accessible. Conversely, production workloads typically provide extensive
metadata that can be harnessed by Al to select the most relevant metrics. Data users can then assess if data quality
meets the requirements of their application domain and perform exploratory testing to quantify data errors in that
context.

Data quality evaluation provides quantitative oversight and alerts users to COVID-19 detection failures
via anomalies in transportation networks. Quality aspects throughout a real estate data pipeline are captured. A
broader Al approach combines diverse metrics to highlight even minor issues. Large-scale data flows exacerbate
these problems, and machine learning addresses an arms race between noise and detection. Push-pull models in
data preparation emphasize the cooperation of users and data scientists in data quality assurance. Al reveals data
quality using data-specific models, scans the metadata registry for quality problems, and generates rectification
code automatically. Such auto-cleaning is attractive if no further damage results.
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Fig 3: Adaptive Data Quality Engineering: From Metadata-Driven Metric Selection to AI-Enabled
Autonomous Rectification
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3.2. Anomaly Detection and Correction Mechanisms

Anomaly detection and correction mechanisms monitor the quality of the data and take remedial
measures when unacceptable quality levels are detected. An additional Al model monitors the quality of the entire
system, using feedback from the data quality detectors to detect anomalies in the detectors and initiate remediation
actions. Remediation actions may include rerunning processes in the system to re-create bad-quality data, leaving
the decision to the AI engine on which processes should be rerun. Such an engine, however, will require
information about the cost of executing each process, as well as the downstream impacts because rerunning certain
processes may change the input data of processes several stages downstream.

An Al engine is capable of determining if the data in an operational data ecosystem is of acceptable
quality, and if not, can quickly initiate remediative actions. It receives a stream of quality scores from the data
quality monitors and can use them to detect sudden shifts in the data ecosystem, determining the level of anomaly
associated with the shift. Anomaly detection can be achieved through an open-source framework called HAAS
(Hypothesis-Augmented Active Sampling). Based on a previous anomaly in the data ecosystem, an anomaly-
detection model is built, which provides an early warning of subsequent future anomalies. The model learns a
spatio-temporal representation of the ecosystem quality metrics and uses it to associate different anomalies—of
similar cause—to the same category, thereby enhancing prediction accuracy. The model can be trained in a self-
supervised manner.

4. Lineage Management in Complex Data Ecosystems

Increases in the volume, diversity, and velocity of data, especially unstructured content, led enterprises
to establish data lakes—centralized repositories that enable massive parallel processing, provide resource agility
through cloud technology, and support the storage of virtually any amount of structured and unstructured content
at a fraction of the cost of traditional systems. Enterprises also adopted data fabric architectures, which facilitate
access to distributed data by integrating disparate information sources and silos, thus providing seamless data
sharing across disparate environments. The data fabric approach does not require data to be physically moved but
provides a layer of data services that supports analytics, governance, and data sharing across a complex web of
interconnected systems—including data lakes, enterprise data warehouses, relational databases, social media, and
Web sources—whether on-premises or in multiple clouds. Moreover, organizations used firehoses to capture
events continuously from applications and transaction systems, storing records in immutable databases.

Despite the advantages of data lakes and fabric architectures, organizations still struggled with the
management of complex data ecosystems. Existing tools offered only point solutions, often specialized for specific
systems, languages, or characteristics, and built with short-term needs in mind, leading to implementation silos or
poorly integrated capabilities across continents and functions. Operations teams therefore lacked a complete
picture of the data environment. With no definitive single source of truth for upstream and downstream data asset
storage and protection, enterprises could not easily assess the impact of decisions in one part of the business on
data in other parts. Quality information was out of date, incorrect, incomplete, or missing altogether. Furthermore,
the risk associated with business decisions was increasing, and root-cause analysis was taking longer. As a
consequence, data-driven organizations faced increased operational risk; identified anomalies were difficult to
resolve, and the corrective actions often did not address the underlying issues.

Table 1. Temporal Data Quality Metrics Across Operational Batches

Date Completeness Accuracy Consistency

2025-12-01 | 0.9369052570380036 | 0.8788801445304677 | 0.8980828284943351
2025-12-02 | 0.9181880608904369 | 0.8620314819095767 | 0.8954349570518084
2025-12-03 | 0.9259650586792301 | 0.885254017870187 | 0.9120175530620748
2025-12-04 | 0.9323865999298262 | 0.9083056783475382 | 0.9084797906816178

https://ijapt.org

136



International Journal of Economic Practices and Theories (IJEPT)
ISSN: 2247-7225
Volume 2026, Issue 1

Date Completeness Accuracy Consistency

2025-12-05 | 0.9229274539809192 | 0.8846744695708679 | 0.9076565711850199

4.1. Metadata Standards and Interoperability

Standardized metadata formats simplify the creation of lineage information and improve interoperability
among tools. International standards developed by the Object Management Group and W3C substantially facilitate
metadata sharing across nontrivial data ecosystems. In data lakes, data warchouse ecosystems, and other settings
exposed to a broader audience, supporting metadata schemas should enable understandable browsing of the
available datasets and direct linkage to corresponding metadata actualization. Examples of broadly adopted
patterns that aid surviving information retrieval include the schema.org search engine metadata schema,
community-contributed catalog metadata by means of the Open Data initiative, and various metadata repositories
for COVID-19 datasets.

The Data Catalog Vocabulary (DCAT) is a W3C standard aiming to facilitate the discovery of datasets
published on the web. DCAT allows all expected data sources to be described with a minimal, coherent, and
interoperable set of properties. DCAT enables the description of catalogs of datasets and data services published
on the web. It is also designed to provide an interface to data catalogs and linked datasets available on the web
using common schema.org patterns, such as the Dataset and DataDownload classes. It can encode the dataset
description patterns commonly used in data catalogs, including the DCAT catalog, the Data Catalog Vocabulary
(DCAT), and SSN—Semantic Sensor Network Ontology, in RDF.
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Fig 4: Metadata-Driven Lineage and Interoperability Framework for Anomaly-Aware Data Ecosystems
Equation 2) Anomaly Detection on Data Quality (Shift/Spike Detection)
Step 1: Maintain a historical baseline

Given a time series Q, (overall quality per batch/window), compute baseline mean and standard deviation:

p=23110 0= |53, — w)?

Step 2: Standardize the current observation (z-score)

Interpretation: how many standard deviations away from normal the current batch is.
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Step 3: Flag anomalies using a threshold

Anomaly att & |z,| > k
Typical governed choice: k € [2,3] depending on tolerance.
Step 4 (optional): Trigger remediation decision

Ve = f(qe, my)

where q, are facet scores at time t, and m, are metadata/context features (pipeline stage, data source, lineage,
etc.). Output ¥, € {0,1}: remediate or not.

4.2. Provenance Capture Techniques

An understanding of the componential combinations in complex data ecosystems helps make intelligent
design choices to enable metadata-gathering automation as referred to in Section 4.1. Provenance capture methods
can therefore be applied judiciously and holistically to avoid excessive resource usage. Provenance capture
techniques may therefore be classified as non-intrusive state-of-the-art mechanisms based on event sources and
sinks.

Non-intrusive methods use available system-level infrastructure to capture provenance, e.g., logging
facilities, network monitoring devices, or process control systems. Furthermore, logging/debugging facilities
available in execution platforms may also serve provenance-gathering purposes. Such mechanisms should remain
active even during normal operation. Examples include Precog, which adds provenance-gathering support to
standard log generation systems, DPM, which captures provenance of display devices, or ProGraVi for BIOS-
based provenance. In streaming systems, provenance can be tapped from monitoring or observability
infrastructure, such as Prometheus.

Provenance may also be captured during data exchange using protocol-aware middleware, which may
act as an indirect source for data transfers. Comprehensible logs can be generated by covering event sources and
sinks with provenance monitoring tools. Network flow-monitoring devices may serve as indirect sources and sinks
for provenance. These devices extract knowledge about the features of the traffic flowing through them, including
summaries of client-server requests and responses. A causal model for the entire provenance graph is constructed
by correlating the event information available in the indirect sources and sinks using the monitoring resources.

5. Scalable Data Pipeline Architecture

Sophisticated Al solutions typically rely on complex data pipelines involving intricate orchestration of
various data sources, analytics components, and target systems. The structure and capabilities of the pipeline need
to facilitate seamless integration into deployment environments while remaining scale-agnostic to allow
deployment on-premises, on cloud platforms, or in hybrid configurations. Different paradigms for data pipeline
orchestration have emerged to support such eased integration and modifiability. In particular the marriage of
Workflow Management Systems (WMS) with Message-Oriented Middleware (MOM) technologies has proven
suitable for deployment scenarios with significant operational variability, such as in the transport and logistics
domains where pipelines process incoming sensor data streamed in chronological order, although ad-hoc
processing of archived databased reports remains a key requirement.

Development approaches for heterogeneous custom-built data pipelines bring additional modifiability
challenges. Cognitive Data Engineering suggests adopting a semiconductor design practice pioneered in the 1990s
by Advanced Micro Devices Inc. (AMD), where assets are housed in multi-site Infrastructure as a Service (IaaS)
clouds with specialised design partners engaged at a trusted services supplier level. Scheduling and resource
allocation require a resource-aware approach that spans the entire pipeline lifetime and is supported by capable
tools. Business Intelligence (BI) solutions, Data Integration (DI) products, and cloud-based data pipeline offerings
from third-party providers present obvious cost and time advantages that have driven widespread adoption.
However, naive scheduling of DI job requests can lead to excessive resource purchases.
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5.1. Orchestration Paradigms and Tooling

Two principal classes of orchestration have emerged: centralized, user-driven orchestration, and
distributed, automatically-driven orchestration. Centralized orchestration facilitates users in specifying data flows
through predefined components. Automation tools such as Apache Airflow, Azkaban, and Oozie enable graphical
interaction with controllers. However, these systems satisfy only a subset of Al govern-ance goals defined in a
preceding section. The overload on human resources becomes a bottleneck in complex, multi-tenant ecosystems
with extensive, frequent, and diverse data operations. Also, the underlying tools populate monitoring, control, and
logging sites with many rule-compliant alerts, warnings, and errors, most of which are never investigated. These
deficiencies prompted an alternative control paradigm. Dynamic, resource-aware scheduling shifts the role of the
human operator from initiator to overseer. The Al-aware user-community only needs to specify data and other
resources essential to complete an operation and trigger the execution. The underlying mechanism uses Al models
and run-time data to select appropriate algorithms, tools, and other resources. Data integrity and the quality of the
source data guide selection. Al checks and balances enable safe operation.

Tools assisting rule-compliant scheduling must pursue a well-defined set of Al governance goals. Several
start-ups have introduced resource-aware ddsl tools. Data- and compute-intensive process-ensembles define look-
up-datasets that constrain sources and data-quality requirements. Scheduling tools monitor availability, data
topologies, and transformations and use these to assign and adapt jobs. Cost estimates address waiting times and
expenses of cloud-based resources. dPipeline provides experimental demonstration. Independent Data Science
and Machine Learning engineers can request direct execution. A store queries available ddsl definitions and uses
these to define a multi-variable-regression task. Scheduling tools empty the adjustment-years-enumeration table
enabled by upcoming Rainfall-Quality-Classification task, use the run-time data for variance-accounting, and
assign a Regression model for implementation.
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Fig 5: From User-Initiated to AI-Driven Orchestration: Autonomous Resource-Aware Scheduling for
Governed Data-Flow Ensembles

https://ijapt.org 139



International Journal of Economic Practices and Theories (IJEPT)
ISSN: 2247-7225
Volume 2026, Issue 1

5.2. Resource-Aware Scheduling and Cost Optimization

Formal orchestration of distributed data pipelines facilitates controlled processing of complex data
ecosystem resources. Effective data pipeline management minimizes execution time and external service costs
while balancing the presence of expense-intense and cumulative queries across the execution timeline. Resource-
aware scheduling, designed using advanced queue management techniques, prioritizes the execution of active
queries with temporary resources over those relying on expensive services.

The orchestration of complex data ecosystems often relies on established techniques, tools, and systems.
These resources primarily target construction, validation, schedule management, and health status monitoring,
while sophisticated scheduling remains a distinct challenge. Managing many queries simultaneously, especially
when data ecosystems provide services whose execution incurs additional costs, poses a major issue. Resource-
aware scheduling mitigates this challenge by focusing on the efficient management of temporary resources, such
as those used for intermediate data materialization. The objective is to minimize costs incurred from costly
underlying services, e.g. text analysis or machine translation, while parallelizing the execution of active queries
requiring these services. Advanced queue management techniques support the prioritization of active queries
reliant on temporary resources, without overexpensing the underlying costly services.

By defining different application queue classes, the architecture supports multiple queue management
strategies. As all queries are now partitioned, it becomes possible to regulate the maximum number of parallel
queries by class.

Table 2. Cost Profile of Data Pipeline Jobs Under Naive Scheduling

Job | Service $/hr | Runtime (hr) | Naive cost ($)
J5 | 7.38 2.29 20.72

J6 11.65 1.55 19.68

7 | 8.74 0.58 5.05

J8 12.75 2.09 29.86

J9 | 6.96 0.6 4.2

J10 | 9.77 2.15 24.5

6. AI Governance for Data Pipelines

Cognitive Data Engineering represents the next logical step of Data Engineering for the cognitive era.
Data pipelines that propel Al and analytics workloads must thus be able to guarantee the impact of their outputs
on the value generation of the respective organizations. Data pipelines must become industry-grade Artificial
Intelligence and Machine Learning products that are kept, governed, and maintained across the complete lifecycle
by solution development, IT service provisioning, business users, data governance or data protection functions.

Al governance for the data pipeline layer enables the definition of Al governance roles, policies, and
decision rights in an Al governance model. It also enables risk assessment for Al and analytics solutions in a risk
management framework, covering both data used by the Al components and outputs consumed by Al consumers.
Provided that the above-mentioned dimensions are in place, business users of the data pipeline layer can generate
high-quality data products and services while delivery teams leverage a collaborative approach for monitoring the
operational state and possible issues with the solutions in production. Al governance for data pipelines is guided
by the GPALI principles around a risk-oriented approach for securing the Al life cycle. A structured approach is
proposed for establishing those components so that industry-grade products and services are delivered for
increasing the business value derived from horizontal data ecosystems.
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Equation 3) Risk Scoring Using Thresholds vs Normal Ranges

Step 1: Define risk indicators (metrics)

Let risk be represented by indicators 7y, ..., 1, (€.g., availability state, SLA violations, cost spikes, quality drops).
Step 2: Normalize each indicator relative to its historical normal range

If a metric has historical mean y; and std o;:

U £ By ° 7
ri =
O;

Then convert it to a bounded “risk contribution,” e.g. via sigmoid:

900 = e

Step 3: Aggregate into a pipeline risk score

p
R= zaig(fi). Yap=1
i=1

Step 4: Governance rule for alerting/closure

Trigger mitigation © R > 1

lllustrative Cost Comparison: Naive vs Resource-Aware Scheduling

30 A s Naive
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Cost ($)
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Fig 6: AI-Governed Pipeline Risk Scoring and Threshold-Based Alert Framework
6.1. Roles, Policies, and Decision Rights

Using Al to govern data pipelines means determining roles within the data ecosystem, defining the
policies that govern those roles, and establishing decision rights over the Al-assisted data pipelines. These three
elements of governance work together to determine which human actors can override decisions made by Al
components within the data pipeline, and the broader impact of those decisions on the universe of data that the
ecosystem supports.

Roles relate to the distinct set of responsibilities that a particular actor assumes relative to the data
ecosystem of interest. The highest-level role in an organization that owns or manages a data ecosystem is that of
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Chief Data Officer (CDO). One of the CDO’s main responsibilities is determining who has the right to make
decisions about larger investments. Behind the CDO are a variety of other specialized roles, including Data
Architect, Data Engineer, Data Scientist, Data Custodian, and Data Steward. These and other roles are determined
on a per-ecosystem basis.

Common types of policies include service-level agreements (SLAs), which define how parameters such
as data freshness and data lineage should be maintained for a given dataset; data decision policies, which define
the factors or metrics that should be used to make decisions over a specific dataset; and approval and
communications policies, which define decision authorities and communication lines for various audiences.
Together, these policies automate — to the point of being fully Al-governed — user-defined actions over datasets
that require little human intervention. Such policies transfer the risk from any single user to the multitude of users
of a data asset.

6.2. Risk Assessment and Mitigation

Data pipeline risk management requires a comprehensive understanding of key pipeline components, the
interdependencies and systems integrated by the pipeline, the values of qualitative and quantitative operational
metrics, and the implications of deviation from ranges for these metrics. Formal risk specification must define
metrics considered to indicate risk and thresholds that, when exceeded, generate alerts or trigger closure actions.
These thresholds are best expressed relative to normal ranges calculated from historical data. The set of
components observable within the data pipeline and the established operational status of each component must
also be considered. Categorization of pipeline components according to their operational status provides an
effective basis for risk assessment. Quantifying qualitative operational states enables automatic evaluation for the
presence of abnormal conditions based on value ranges. Availability of service components, together with a union
of qualitative and quantitative metadata parameters defining the pipeline, provide the foundation for risk
assessment.

Risk mitigation heuristically employs decentralized anomaly-detection/response modules directly
attached or co-located with pipeline tasks. These actively monitor the aspects of pipeline resource consumption
directly attributable to each task component, and detect anomalies either by supervised learning—modeling
normal operating conditions—and signaling when the pipeline deviates from those conditions, or by unsupervised
learning, clustering usage patterns and signaling outliers. In practice, both approaches are often used concurrently
and unified into a unified model-checking controller. Process state information, quality metrics on both the source
and generated datastores, and operating state of integrated tooling are also integrated, to prevent resource
consumption outside normal operating conditions for both the pipeline and its components.

7. Conclusion

The principles of Cognitive Data Engineering proposed in this work enable the judicious use of Al
models to improve data quality, manage data provenance and lineage, and build scalable Data as a Service
infrastructure for real-time data pipelines. Al models can help identify and assess important quality metrics of
datasets produced in automated data ecosystems, detect anomalies in their values and distributions, and suggest
correction actions. Quality degradation can lead to unreliable and sometimes harmful insights when the end
models are based on supervised, generative or reinforcement learning systems. Quality assessment is far more
challenging in this case and needs to be automatically embedded in the production cycle of the datasets (e.g.,
prediction of model performance with respect to a set of quality metrics). Integrating the quality assessment and
correction loops in a holistic manner is an additional aspect that needs to be researched.

In complex data ecosystems, trustworthy data provenance and lineage are essential for the responsible
and ethical use of data as well as for enabling interoperability among datasets. Provenance and lineage information
needs to be systematically captured, published and curated across the ecosystem to build trust, and promote
interoperability and reuse of datasets. Solution proposals need to bring down the effort required for provenance
capture to zero for the producers of data. This can be achieved by using specialised tools that capture provenance
using observational, inferential, or user-annotation techniques. Cognitive Data Engineering proposes a novel
automated Data Pipeline architecture to support Data as a Service infrastructure for data-rich real-time
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applications and Al-enabled autonomic mechanisms for reducing Total Cost of Ownership (TCO). The technology
enables the periodic execution of data pipelines as an alternative to hard real-time execution to reduce the TCO
without compromising support for real-time data analytics.

DaaS & Autonomic Mechanisms
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Fig 7: DaaS & Autonomic Mechanisms
7.1. Summary and Future Directions

Cognitive Data Engineering represents the design of large-scale data ecosystems aided by Al governing
the quality, lineage, and cost of data pipelines. Data quality assurance receives particular emphasis, with
provisioning activities for detecting and correcting quality anomalies integrated into the cognitive feedback loop.
Quality metrics tailored for a diverse set of data stakeholders capture a wide variety of aspects, ranging from
correctness to concept drift. Al governance provides the necessary role definition and policies to constitute and
maintain an organization’s data assets as a business service.

Despite much ground covered, a number of avenues remain to be pursued. First, all these aspects should
be integrated into a cohesive end-to-end framework for cognitive data engineering, including supporting tooling
such as a knowledge graph, workflow automation, and orchestration engine. Second, machine-learning
approaches capable of addressing every aspect of Al-Powered Data Quality should be researched and developed.
Third, similar treatment should be applied to Data Pipeline Cost Engineering. Special attention would need to be
given to risk detection, assessment, and mitigation, as that aspect of the governance function is currently
underexplored. Finally, further insights to be derived from conceptualizing Data Pipeline Quality as a supervised
learning task should be pursued.
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