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Abstract 

Artificial intelligence (AI) is establishing itself as the next generation of technology. However, the data required 

to train such expandable, self-learning, powerful systems have so far been collected and pre-processed in a 

traditional manner. Moreover, because of the lack of governance in many such AI initiatives, these processes 

remain uncontrolled and often produce low-quality results. Both issues urgently need solution. 

Three core principles of cognitive data engineering have been developed that are enabled by the recent expansion 

of AI technology. First, quality metrics and evaluation, as well as anomaly detection and correction mechanisms, 

have been formalized to provide a comprehensive AI-governed data-quality framework. Next, a set of metadata 

standards that define describe and affect Internet-scale data ecosystems is proposed. Their implementation 

provides a sophisticated method of capturing data lineage and provenance information and using that data for 

compliance and efficient data query acceleration. Third, the data pipeline architecture is designed to produce the 

definition and execution of complex data pipelines and orchestration in a cost-aware manner. These contributions 

enable an AI governance framework for complete data pipelines. Such a framework defines roles, policies, and 

decision rights to identify risks in the use of data pipelines, assess those risks quantitatively, and provide mitigation 

guidelines. 
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1. Introduction 

Data engineering, the process of making data available for consumption, is a critical function in almost 

every industry. It encompasses the design, creation, management, and optimization of data pipelines and other 

systems for storing, moving, and processing large volumes of data. These capabilities have powered the 

development of data science, machine learning, big data, and AI, enabling rapid innovations in a broad range of 

application domains, including healthcare, national security, finance, and self-driving vehicles. 

The advent of generative AI and, in particular, the recent development of foundation models—extremely 

large deep learning models that have been pretrained using self-supervision on massive datasets—has spurred a 

new wave of interest in using AI systems not just for analysis and prediction, but also for production workflows 

and applications. These new, more complex ecosystems for deploying AI systems—often referred to as AI 

factories—have changed the requirements and stressors on data engineering, creating challenges not only for 

engineering but also for the quality, lineage, and management of the underlying data pipeline support systems. 

The focus so far in AI has primarily been on the intelligence exhibited by the AI models and not on other key 

components of the wider ecosystem for deploying these models. 
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1.1. Overview of Cognitive Data Engineering Principles 

Organizations increasingly rely on data science to extract value from data. Unlike classic software 

development processes, data science projects use data pipelines that vary in structure and execution over time and 

can even merge or split running pipelines. Data pipeline engineering is often now performed by highly skilled 

data scientists and analysts, who work without necessary software engineering principles and data management 

tools. These gaps lead to data quality issues and pipeline execution inefficiencies. 

 

Fig 1: Cognitive Data Engineering: Leveraging AI-Governed Data Quality and Lineage Management to 

Bridge the Gap Between Data Science and Software Engineering 

Cognitive data engineering—AI-governed data quality, data lineage management, and data pipeline 

engineering—allows data to be managed so that the right data are on hand at the right time and for the right cost. 

Essential AI-governed data quality principles include defining quality metrics and levels for various use cases; 

assessing data quality based on these requirements; detecting and correcting data (de)normalization, 

compositional, and logical anomalies; and ensuring the availability of complete operational datasets. In complex, 

heterogeneous ecosystems, additional aspects, such as the definition and management of an enterprise data model, 

an operational data vault, or a cleansed operational subsystem, become crucial. Enabling AI-governed data quality 

within a large enterprise also calls for elements such as a quality charter, fact sheet, and risk profile. 

2. Theoretical Foundations of Cognitive Data Engineering 

Data engineering focuses on data processing for analytics and learning. Though often a specialty, 

engineering for AI-driven services introduces unique challenges that require new support paradigms. Quality 

control becomes increasingly difficult as real-time data feeds from sporadic, untrusted, and rapidly evolving 

sources replace trusted and consistently available historical databases. Data provenance and lineage tracking gain 

importance due to the intricacy of AI/ML components and the growing dependence on complex data ecosystems 

comprising diverse and hacker-prone services. Resource-aware data scheduling mechanisms are required to 

continuously monitor the current and predicted load levels and control cloud resource usage across public, private, 

and hybrid deployments. 

While the evolving data ecosystem is already highly complex and vulnerable, its management and control 

must also now be delegated to AI-based cognitive services with the potential for augmented self-healing that can 

dynamically fix detected issues with minimal human intervention. Recent work demonstrates the need for data 

quality control and resilience by analyzing the most common causes of ML prediction errors in enterprise systems, 

proposing a hierarchy of metric types and corresponding monitoring solutions and combining them into a coherent 

quality framework for continuous requirement specification, monitoring, and maintenance. 
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2.1. Data Quality in AI-Driven Systems 

Data quality issues impact machine learning systems, resulting in organizations scuttling AI initiatives. 

The scientific literature supports these real-world experiences through normative works proposing quality metrics 

for data lakes, operational and exploratory repositories, and automated data pipelines. Temporal stability of quality 

metrics is used in change detection algorithms that identify incremental maintenance and cleaning tasks. The 

surface and depth of data lakes influence the quality of children observed during the actual execution of machine 

learning projects. Further, data provided by sensor networks is termed smart data, and a framework for defining 

smart data quality metrics employing time constraints is presented. Given the nature of AI systems, quality has 

also been viewed through the lens of AI governance, where existing data quality roles are mapped to a governance 

layer; the data steward role has been expanded to include data-quality-as-a-service operations and infrastructure 

support services. 

An exploratory study using the qualities of successful companies as a basis for comparison has shown 

that emerging technologies promote lower quality than the ten established qualities generally accepted. However, 

machine learning and artificial intelligence reduce quality for education and cognitive systems. Towards this goal, 

machine learning housing data ask such services to inspect input datasets in an unsupervised setup. Florida, USA 

a set of specified features is presented, that serve the purpose of tracking dependency-based heuristic preparation 

in the final machine-learning service using the serviced dataset. A recommendation model is built and presented 

using flask and span tools that asks for other training sets along with its quality features visible in the 

recommendation model while preparing, thus serving the need of dependency-based heuristic allocation and 

preparation of data. 

 

Fig 2: Multi-Facet Data Quality Scoring Model with Normalization and Weighted Aggregation 

Equation 1) Data Quality Metrics → Overall Quality Score (Q) 

Step 1: Define quality facets (attributes) 

𝑞1, 𝑞2, … , 𝑞𝑚 

Each 𝑞𝑖 is typically normalized to [0,1] (0 = worst, 1 = best). 

Step 2: Normalize a raw metric to a 0–1 score 

Suppose a facet is measured as a raw metric 𝑥 (e.g., % missing, latency, error rate). To map it to [0,1], a common 

normalization is min–max: 

• If higher is better: 

𝑞 =
𝑥 − 𝑥min

𝑥max − 𝑥min

 

• If lower is better (e.g., missing rate, error rate): 
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𝑞 = 1 −
𝑥 − 𝑥min

𝑥max − 𝑥min

 

This gives comparable scores across facets. 

Step 3: Weight facets by importance (policy / use-case) 

The article emphasizes that quality depends on goals/use-cases and governance policies. 

Assign weights 𝑤𝑖 ≥ 0 with: 

∑𝑤𝑖

𝑚

𝑖=1

= 1 

Step 4: Compute the overall quality score 

A standard governed “overall quality” KPI is the weighted sum: 

𝑄 =∑𝑤𝑖

𝑚

𝑖=1

𝑞𝑖 

2.2. Data Lineage and Provenance 

Research on data lineage has largely focused on two objectives: the management of data in large Directly 

Accessed Data Store (DADS) data stores and within complex data ecosystems characterized by a rich data 

provenance model. The latter addresses new business challenges imposed by the growing disintermediation of 

data consumers and producers through cloud computing and the desire for a more agile, responsive style of 

interaction. The proliferation of diverse data providers participating in a data-sharing ecosystem brings to the fore 

the old parable of “garbage in, garbage out.” Consumers believe they are obligated to pay for products of higher 

quality than those they’ve been exposed to in the past. DADS stores, on the other hand, represent a vault for data 

writers. These stores offer online transaction processing-type cost and availability trade-offs, with more emphasis 

given to scalability than to quality. Management of DADS repositories is further complicated by the complexity 

of the last-miles providing data to these stores at scale. 

Two specific objectives emerge from these considerations. The first involves supporting the full data 

lifecycle within complex ecosystems over timeframes that range from a few minutes to several weeks. The goal 

is to formalize the structure and role of data within a Cloud Service Provider (CSP) ecosystem characterized by 

DADS consumers, producers, and a range of data creation and repurposing services that can take different forms 

(ranging from highly automated provisioning to high-touch, bespoke replication). The lineage and integrity 

requirements are subsequently translated into a suite of new data properties and persistence mechanisms enabled 

by a combination of NoSQL storage and the use of provenance tracking. When viewed from this angle, the data 

is no longer an opaque block, but a living organism that grows, ages, matures, and dies. The second objective 

extends the traditional concepts of data lineage and provenance by examining in detail the source, transformation, 

quality, and completeness properties of the data arriving at the last-mile within a data-sharing ecosystem of 

multiple players. 

3. AI-Governed Data Quality Framework 

Quality provides foundation and merit for data science and analytics. Intrinsically, all data in data-driven 

systems exhibit some quality flaws. Majority of these flaws are recognized and serviced, however, there are 

remaining anomalies which can fall under the radar of reliability matrices. To help with discovering and servicing 

these flaws in data, an AI-governed quality framework has been structured which recognizes critical quality 

metrics, automated anomaly discovery and service methods that can be orchestrated during data pipeline 

execution. 

Quality evaluation criteria is delineated in the quality assurance phase using a set of Quality Attributes, 

one for each data quality facet. The framework's next stage autogenerated condition-specific knowledge logic that 

can cast fault indication rules on data quality. Subsequent stage uses these indication patterns to alert an appliance 
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of existing issue with data sources/producers. The final stage generates machine-learning-based decision 

classifiers that predict whether a remediation activity is required during the service of the data in line with 

established quality dimensions. A knowledge system for an automatic crowd-sizing ability remains under 

development. An augmentation for this knowledge system defines logical decision templates that express surface 

conditions capable of requiring machine-assisted appraisal and servicing of data. 

3.1. Quality Metrics and Evaluation 

The quality of data is dependent on the goals of its analysis. Nevertheless, a range of attributes 

characterizes the utility of a dataset in any context. Data quality metrics collect these attributes into a formal 

scheme. Automating the identification of suitable metrics is a fundamental aspect of quality analysis in research, 

where no additional information is accessible. Conversely, production workloads typically provide extensive 

metadata that can be harnessed by AI to select the most relevant metrics. Data users can then assess if data quality 

meets the requirements of their application domain and perform exploratory testing to quantify data errors in that 

context. 

Data quality evaluation provides quantitative oversight and alerts users to COVID-19 detection failures 

via anomalies in transportation networks. Quality aspects throughout a real estate data pipeline are captured. A 

broader AI approach combines diverse metrics to highlight even minor issues. Large-scale data flows exacerbate 

these problems, and machine learning addresses an arms race between noise and detection. Push-pull models in 

data preparation emphasize the cooperation of users and data scientists in data quality assurance. AI reveals data 

quality using data-specific models, scans the metadata registry for quality problems, and generates rectification 

code automatically. Such auto-cleaning is attractive if no further damage results. 

 

Fig 3: Adaptive Data Quality Engineering: From Metadata-Driven Metric Selection to AI-Enabled 

Autonomous Rectification 
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3.2. Anomaly Detection and Correction Mechanisms 

Anomaly detection and correction mechanisms monitor the quality of the data and take remedial 

measures when unacceptable quality levels are detected. An additional AI model monitors the quality of the entire 

system, using feedback from the data quality detectors to detect anomalies in the detectors and initiate remediation 

actions. Remediation actions may include rerunning processes in the system to re-create bad-quality data, leaving 

the decision to the AI engine on which processes should be rerun. Such an engine, however, will require 

information about the cost of executing each process, as well as the downstream impacts because rerunning certain 

processes may change the input data of processes several stages downstream. 

An AI engine is capable of determining if the data in an operational data ecosystem is of acceptable 

quality, and if not, can quickly initiate remediative actions. It receives a stream of quality scores from the data 

quality monitors and can use them to detect sudden shifts in the data ecosystem, determining the level of anomaly 

associated with the shift. Anomaly detection can be achieved through an open-source framework called HAAS 

(Hypothesis-Augmented Active Sampling). Based on a previous anomaly in the data ecosystem, an anomaly-

detection model is built, which provides an early warning of subsequent future anomalies. The model learns a 

spatio-temporal representation of the ecosystem quality metrics and uses it to associate different anomalies—of 

similar cause—to the same category, thereby enhancing prediction accuracy. The model can be trained in a self-

supervised manner. 

4. Lineage Management in Complex Data Ecosystems 

Increases in the volume, diversity, and velocity of data, especially unstructured content, led enterprises 

to establish data lakes—centralized repositories that enable massive parallel processing, provide resource agility 

through cloud technology, and support the storage of virtually any amount of structured and unstructured content 

at a fraction of the cost of traditional systems. Enterprises also adopted data fabric architectures, which facilitate 

access to distributed data by integrating disparate information sources and silos, thus providing seamless data 

sharing across disparate environments. The data fabric approach does not require data to be physically moved but 

provides a layer of data services that supports analytics, governance, and data sharing across a complex web of 

interconnected systems—including data lakes, enterprise data warehouses, relational databases, social media, and 

Web sources—whether on-premises or in multiple clouds. Moreover, organizations used firehoses to capture 

events continuously from applications and transaction systems, storing records in immutable databases. 

Despite the advantages of data lakes and fabric architectures, organizations still struggled with the 

management of complex data ecosystems. Existing tools offered only point solutions, often specialized for specific 

systems, languages, or characteristics, and built with short-term needs in mind, leading to implementation silos or 

poorly integrated capabilities across continents and functions. Operations teams therefore lacked a complete 

picture of the data environment. With no definitive single source of truth for upstream and downstream data asset 

storage and protection, enterprises could not easily assess the impact of decisions in one part of the business on 

data in other parts. Quality information was out of date, incorrect, incomplete, or missing altogether. Furthermore, 

the risk associated with business decisions was increasing, and root-cause analysis was taking longer. As a 

consequence, data-driven organizations faced increased operational risk; identified anomalies were difficult to 

resolve, and the corrective actions often did not address the underlying issues. 

Table 1. Temporal Data Quality Metrics Across Operational Batches 

Date Completeness Accuracy Consistency 

2025-12-01 0.9369052570380036 0.8788801445304677 0.8980828284943351 

2025-12-02 0.9181880608904369 0.8620314819095767 0.8954349570518084 

2025-12-03 0.9259650586792301 0.885254017870187 0.9120175530620748 

2025-12-04 0.9323865999298262 0.9083056783475382 0.9084797906816178 
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Date Completeness Accuracy Consistency 

2025-12-05 0.9229274539809192 0.8846744695708679 0.9076565711850199 

4.1. Metadata Standards and Interoperability 

Standardized metadata formats simplify the creation of lineage information and improve interoperability 

among tools. International standards developed by the Object Management Group and W3C substantially facilitate 

metadata sharing across nontrivial data ecosystems. In data lakes, data warehouse ecosystems, and other settings 

exposed to a broader audience, supporting metadata schemas should enable understandable browsing of the 

available datasets and direct linkage to corresponding metadata actualization. Examples of broadly adopted 

patterns that aid surviving information retrieval include the schema.org search engine metadata schema, 

community-contributed catalog metadata by means of the Open Data initiative, and various metadata repositories 

for COVID-19 datasets. 

The Data Catalog Vocabulary (DCAT) is a W3C standard aiming to facilitate the discovery of datasets 

published on the web. DCAT allows all expected data sources to be described with a minimal, coherent, and 

interoperable set of properties. DCAT enables the description of catalogs of datasets and data services published 

on the web. It is also designed to provide an interface to data catalogs and linked datasets available on the web 

using common schema.org patterns, such as the Dataset and DataDownload classes. It can encode the dataset 

description patterns commonly used in data catalogs, including the DCAT catalog, the Data Catalog Vocabulary 

(DCAT), and SSN–Semantic Sensor Network Ontology, in RDF. 

 

Fig 4: Metadata-Driven Lineage and Interoperability Framework for Anomaly-Aware Data Ecosystems 

Equation 2) Anomaly Detection on Data Quality (Shift/Spike Detection) 

Step 1: Maintain a historical baseline 

Given a time series 𝑄𝑡 (overall quality per batch/window), compute baseline mean and standard deviation: 

𝜇 =
1

𝑇
∑ 𝑄𝑡
𝑇
𝑡=1  𝜎 = √

1

𝑇−1
∑ (𝑄𝑡 − 𝜇)2𝑇
𝑡=1  

Step 2: Standardize the current observation (z-score) 

𝑧𝑡 =
𝑄𝑡 − 𝜇

𝜎
 

Interpretation: how many standard deviations away from normal the current batch is. 



International Journal of Economic Practices and Theories (IJEPT) 

ISSN: 2247-7225 

Volume 2026, Issue 1 
 

https://ijapt.org                                    138 

Step 3: Flag anomalies using a threshold 

Anomaly at 𝑡 ⇔ |𝑧𝑡| > 𝑘 

Typical governed choice: 𝑘 ∈ [2,3] depending on tolerance. 

Step 4 (optional): Trigger remediation decision 

𝑦̂𝑡 = 𝑓(𝐪𝑡 , 𝐦𝑡) 

where 𝐪𝑡 are facet scores at time 𝑡, and 𝐦𝑡 are metadata/context features (pipeline stage, data source, lineage, 

etc.). Output 𝑦̂𝑡 ∈ {0,1}: remediate or not. 

4.2. Provenance Capture Techniques 

An understanding of the componential combinations in complex data ecosystems helps make intelligent 

design choices to enable metadata-gathering automation as referred to in Section 4.1. Provenance capture methods 

can therefore be applied judiciously and holistically to avoid excessive resource usage. Provenance capture 

techniques may therefore be classified as non-intrusive state-of-the-art mechanisms based on event sources and 

sinks. 

Non-intrusive methods use available system-level infrastructure to capture provenance, e.g., logging 

facilities, network monitoring devices, or process control systems. Furthermore, logging/debugging facilities 

available in execution platforms may also serve provenance-gathering purposes. Such mechanisms should remain 

active even during normal operation. Examples include Precog, which adds provenance-gathering support to 

standard log generation systems, DPM, which captures provenance of display devices, or ProGraVi for BIOS-

based provenance. In streaming systems, provenance can be tapped from monitoring or observability 

infrastructure, such as Prometheus. 

Provenance may also be captured during data exchange using protocol-aware middleware, which may 

act as an indirect source for data transfers. Comprehensible logs can be generated by covering event sources and 

sinks with provenance monitoring tools. Network flow-monitoring devices may serve as indirect sources and sinks 

for provenance. These devices extract knowledge about the features of the traffic flowing through them, including 

summaries of client-server requests and responses. A causal model for the entire provenance graph is constructed 

by correlating the event information available in the indirect sources and sinks using the monitoring resources. 

5. Scalable Data Pipeline Architecture 

Sophisticated AI solutions typically rely on complex data pipelines involving intricate orchestration of 

various data sources, analytics components, and target systems. The structure and capabilities of the pipeline need 

to facilitate seamless integration into deployment environments while remaining scale-agnostic to allow 

deployment on-premises, on cloud platforms, or in hybrid configurations. Different paradigms for data pipeline 

orchestration have emerged to support such eased integration and modifiability. In particular the marriage of 

Workflow Management Systems (WMS) with Message-Oriented Middleware (MOM) technologies has proven 

suitable for deployment scenarios with significant operational variability, such as in the transport and logistics 

domains where pipelines process incoming sensor data streamed in chronological order, although ad-hoc 

processing of archived databased reports remains a key requirement. 

Development approaches for heterogeneous custom-built data pipelines bring additional modifiability 

challenges. Cognitive Data Engineering suggests adopting a semiconductor design practice pioneered in the 1990s 

by Advanced Micro Devices Inc. (AMD), where assets are housed in multi-site Infrastructure as a Service (IaaS) 

clouds with specialised design partners engaged at a trusted services supplier level. Scheduling and resource 

allocation require a resource-aware approach that spans the entire pipeline lifetime and is supported by capable 

tools. Business Intelligence (BI) solutions, Data Integration (DI) products, and cloud-based data pipeline offerings 

from third-party providers present obvious cost and time advantages that have driven widespread adoption. 

However, naive scheduling of DI job requests can lead to excessive resource purchases. 
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5.1. Orchestration Paradigms and Tooling 

Two principal classes of orchestration have emerged: centralized, user-driven orchestration, and 

distributed, automatically-driven orchestration. Centralized orchestration facilitates users in specifying data flows 

through predefined components. Automation tools such as Apache Airflow, Azkaban, and Oozie enable graphical 

interaction with controllers. However, these systems satisfy only a subset of AI govern-ance goals defined in a 

preceding section. The overload on human resources becomes a bottleneck in complex, multi-tenant ecosystems 

with extensive, frequent, and diverse data operations. Also, the underlying tools populate monitoring, control, and 

logging sites with many rule-compliant alerts, warnings, and errors, most of which are never investigated. These 

deficiencies prompted an alternative control paradigm. Dynamic, resource-aware scheduling shifts the role of the 

human operator from initiator to overseer. The AI-aware user-community only needs to specify data and other 

resources essential to complete an operation and trigger the execution. The underlying mechanism uses AI models 

and run-time data to select appropriate algorithms, tools, and other resources. Data integrity and the quality of the 

source data guide selection. AI checks and balances enable safe operation. 

Tools assisting rule-compliant scheduling must pursue a well-defined set of AI governance goals. Several 

start-ups have introduced resource-aware ddsl tools. Data- and compute-intensive process-ensembles define look-

up-datasets that constrain sources and data-quality requirements. Scheduling tools monitor availability, data 

topologies, and transformations and use these to assign and adapt jobs. Cost estimates address waiting times and 

expenses of cloud-based resources. dPipeline provides experimental demonstration. Independent Data Science 

and Machine Learning engineers can request direct execution. A store queries available ddsl definitions and uses 

these to define a multi-variable-regression task. Scheduling tools empty the adjustment-years-enumeration table 

enabled by upcoming Rainfall-Quality-Classification task, use the run-time data for variance-accounting, and 

assign a Regression model for implementation. 

 

Fig 5: From User-Initiated to AI-Driven Orchestration: Autonomous Resource-Aware Scheduling for 

Governed Data-Flow Ensembles 
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5.2. Resource-Aware Scheduling and Cost Optimization 

Formal orchestration of distributed data pipelines facilitates controlled processing of complex data 

ecosystem resources. Effective data pipeline management minimizes execution time and external service costs 

while balancing the presence of expense-intense and cumulative queries across the execution timeline. Resource-

aware scheduling, designed using advanced queue management techniques, prioritizes the execution of active 

queries with temporary resources over those relying on expensive services. 

The orchestration of complex data ecosystems often relies on established techniques, tools, and systems. 

These resources primarily target construction, validation, schedule management, and health status monitoring, 

while sophisticated scheduling remains a distinct challenge. Managing many queries simultaneously, especially 

when data ecosystems provide services whose execution incurs additional costs, poses a major issue. Resource-

aware scheduling mitigates this challenge by focusing on the efficient management of temporary resources, such 

as those used for intermediate data materialization. The objective is to minimize costs incurred from costly 

underlying services, e.g. text analysis or machine translation, while parallelizing the execution of active queries 

requiring these services. Advanced queue management techniques support the prioritization of active queries 

reliant on temporary resources, without overexpensing the underlying costly services. 

By defining different application queue classes, the architecture supports multiple queue management 

strategies. As all queries are now partitioned, it becomes possible to regulate the maximum number of parallel 

queries by class. 

Table 2. Cost Profile of Data Pipeline Jobs Under Naïve Scheduling 

Job Service $/hr Runtime (hr) Naive cost ($) 

J5 7.38 2.29 20.72 

J6 11.65 1.55 19.68 

J7 8.74 0.58 5.05 

J8 12.75 2.09 29.86 

J9 6.96 0.6 4.2 

J10 9.77 2.15 24.5 

 

6. AI Governance for Data Pipelines 

Cognitive Data Engineering represents the next logical step of Data Engineering for the cognitive era. 

Data pipelines that propel AI and analytics workloads must thus be able to guarantee the impact of their outputs 

on the value generation of the respective organizations. Data pipelines must become industry-grade Artificial 

Intelligence and Machine Learning products that are kept, governed, and maintained across the complete lifecycle 

by solution development, IT service provisioning, business users, data governance or data protection functions. 

AI governance for the data pipeline layer enables the definition of AI governance roles, policies, and 

decision rights in an AI governance model. It also enables risk assessment for AI and analytics solutions in a risk 

management framework, covering both data used by the AI components and outputs consumed by AI consumers. 

Provided that the above-mentioned dimensions are in place, business users of the data pipeline layer can generate 

high-quality data products and services while delivery teams leverage a collaborative approach for monitoring the 

operational state and possible issues with the solutions in production. AI governance for data pipelines is guided 

by the GPAI principles around a risk-oriented approach for securing the AI life cycle. A structured approach is 

proposed for establishing those components so that industry-grade products and services are delivered for 

increasing the business value derived from horizontal data ecosystems. 
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Equation 3) Risk Scoring Using Thresholds vs Normal Ranges 

Step 1: Define risk indicators (metrics) 

Let risk be represented by indicators 𝑟1, … , 𝑟𝑝 (e.g., availability state, SLA violations, cost spikes, quality drops). 

Step 2: Normalize each indicator relative to its historical normal range 

If a metric has historical mean 𝜇𝑖 and std 𝜎𝑖: 

𝑟̃𝑖 =
𝑟𝑖 − 𝜇𝑖
𝜎𝑖

 

Then convert it to a bounded “risk contribution,” e.g. via sigmoid: 

𝑔(𝑟̃𝑖) =
1

1 + 𝑒−𝑟̃𝑖
 

Step 3: Aggregate into a pipeline risk score 

𝑅 =∑𝛼𝑖

𝑝

𝑖=1

𝑔(𝑟̃𝑖), ∑𝛼𝑖 = 1 

Step 4: Governance rule for alerting/closure 

Trigger mitigation ⇔ 𝑅 > 𝜏 

 

Fig 6: AI-Governed Pipeline Risk Scoring and Threshold-Based Alert Framework 

6.1. Roles, Policies, and Decision Rights 

Using AI to govern data pipelines means determining roles within the data ecosystem, defining the 

policies that govern those roles, and establishing decision rights over the AI-assisted data pipelines. These three 

elements of governance work together to determine which human actors can override decisions made by AI 

components within the data pipeline, and the broader impact of those decisions on the universe of data that the 

ecosystem supports. 

Roles relate to the distinct set of responsibilities that a particular actor assumes relative to the data 

ecosystem of interest. The highest-level role in an organization that owns or manages a data ecosystem is that of 
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Chief Data Officer (CDO). One of the CDO’s main responsibilities is determining who has the right to make 

decisions about larger investments. Behind the CDO are a variety of other specialized roles, including Data 

Architect, Data Engineer, Data Scientist, Data Custodian, and Data Steward. These and other roles are determined 

on a per-ecosystem basis. 

Common types of policies include service-level agreements (SLAs), which define how parameters such 

as data freshness and data lineage should be maintained for a given dataset; data decision policies, which define 

the factors or metrics that should be used to make decisions over a specific dataset; and approval and 

communications policies, which define decision authorities and communication lines for various audiences. 

Together, these policies automate — to the point of being fully AI-governed — user-defined actions over datasets 

that require little human intervention. Such policies transfer the risk from any single user to the multitude of users 

of a data asset. 

6.2. Risk Assessment and Mitigation 

Data pipeline risk management requires a comprehensive understanding of key pipeline components, the 

interdependencies and systems integrated by the pipeline, the values of qualitative and quantitative operational 

metrics, and the implications of deviation from ranges for these metrics. Formal risk specification must define 

metrics considered to indicate risk and thresholds that, when exceeded, generate alerts or trigger closure actions. 

These thresholds are best expressed relative to normal ranges calculated from historical data. The set of 

components observable within the data pipeline and the established operational status of each component must 

also be considered. Categorization of pipeline components according to their operational status provides an 

effective basis for risk assessment. Quantifying qualitative operational states enables automatic evaluation for the 

presence of abnormal conditions based on value ranges. Availability of service components, together with a union 

of qualitative and quantitative metadata parameters defining the pipeline, provide the foundation for risk 

assessment. 

Risk mitigation heuristically employs decentralized anomaly-detection/response modules directly 

attached or co-located with pipeline tasks. These actively monitor the aspects of pipeline resource consumption 

directly attributable to each task component, and detect anomalies either by supervised learning—modeling 

normal operating conditions—and signaling when the pipeline deviates from those conditions, or by unsupervised 

learning, clustering usage patterns and signaling outliers. In practice, both approaches are often used concurrently 

and unified into a unified model-checking controller. Process state information, quality metrics on both the source 

and generated datastores, and operating state of integrated tooling are also integrated, to prevent resource 

consumption outside normal operating conditions for both the pipeline and its components. 

7. Conclusion 

The principles of Cognitive Data Engineering proposed in this work enable the judicious use of AI 

models to improve data quality, manage data provenance and lineage, and build scalable Data as a Service 

infrastructure for real-time data pipelines. AI models can help identify and assess important quality metrics of 

datasets produced in automated data ecosystems, detect anomalies in their values and distributions, and suggest 

correction actions. Quality degradation can lead to unreliable and sometimes harmful insights when the end 

models are based on supervised, generative or reinforcement learning systems. Quality assessment is far more 

challenging in this case and needs to be automatically embedded in the production cycle of the datasets (e.g., 

prediction of model performance with respect to a set of quality metrics). Integrating the quality assessment and 

correction loops in a holistic manner is an additional aspect that needs to be researched. 

In complex data ecosystems, trustworthy data provenance and lineage are essential for the responsible 

and ethical use of data as well as for enabling interoperability among datasets. Provenance and lineage information 

needs to be systematically captured, published and curated across the ecosystem to build trust, and promote 

interoperability and reuse of datasets. Solution proposals need to bring down the effort required for provenance 

capture to zero for the producers of data. This can be achieved by using specialised tools that capture provenance 

using observational, inferential, or user-annotation techniques. Cognitive Data Engineering proposes a novel 

automated Data Pipeline architecture to support Data as a Service infrastructure for data-rich real-time 
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applications and AI-enabled autonomic mechanisms for reducing Total Cost of Ownership (TCO). The technology 

enables the periodic execution of data pipelines as an alternative to hard real-time execution to reduce the TCO 

without compromising support for real-time data analytics. 

 

                                                Fig 7: DaaS & Autonomic Mechanisms 

7.1. Summary and Future Directions 

Cognitive Data Engineering represents the design of large-scale data ecosystems aided by AI governing 

the quality, lineage, and cost of data pipelines. Data quality assurance receives particular emphasis, with 

provisioning activities for detecting and correcting quality anomalies integrated into the cognitive feedback loop. 

Quality metrics tailored for a diverse set of data stakeholders capture a wide variety of aspects, ranging from 

correctness to concept drift. AI governance provides the necessary role definition and policies to constitute and 

maintain an organization’s data assets as a business service. 

Despite much ground covered, a number of avenues remain to be pursued. First, all these aspects should 

be integrated into a cohesive end-to-end framework for cognitive data engineering, including supporting tooling 

such as a knowledge graph, workflow automation, and orchestration engine. Second, machine-learning 

approaches capable of addressing every aspect of AI-Powered Data Quality should be researched and developed. 

Third, similar treatment should be applied to Data Pipeline Cost Engineering. Special attention would need to be 

given to risk detection, assessment, and mitigation, as that aspect of the governance function is currently 

underexplored. Finally, further insights to be derived from conceptualizing Data Pipeline Quality as a supervised 

learning task should be pursued. 
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